
MiniSpec

How-to Author a Testing Framework in .NET

Rebecca Taylor

MiniSpec How-to Author a Testing Framework in .NET

Contents

Introduction i

Defining the API 1
Conventional Testing Styles . 1

xUnit . 1
Behavior-Driven Development . 2
Gherkin (aka Cucumber) . 2

Choosing a Style to Implement . 3
MiniSpec Syntax . 3

Test-Driven Test Development 4
Writing a Red Test . 4

Project Setup . 4
Example Tests.cs File . 5
Integration Tests . 5

Making it Go Green . 7
MiniSpec Project . 7
minispec.exe . 8
Run the Integration Test . 8
Discovering Tests in DLLs . 10
Running Tests in DLLs . 11

Red, Green, Refactor . 13

Planning Phase 14
Brainstorm Features . 14
Choose Feature to Implement . 15

Choose Your Own Adventure 17

2 Rebecca Taylor

MiniSpec How-to Author a Testing Framework in .NET

Introduction

i Rebecca Taylor

MiniSpec How-to Author a Testing Framework in .NET

Defining the API

Before we begin implementation, we need to decide what we want the end result to look like.

What will the experience of authoring tests be like for developers?

Conventional Testing Styles

Developers who have experience authoring tests will likely have used one or more testing styles.

There are different schools of thought on what tests should look like.

xUnit, Behavior-Driven Development (BDD), Gherkin

Themost common testing syntax styles are: xUnit, Behavior-Driven Development, and Gherkin.

Note: Behavior-Driven Development is a software process, not a code syntax.
However, similar syntax styles have emerged over the years for these different testing paradigms.

xUnit

xUnit-style syntax typically…

• Uses built-in language constructs for defining “Test Fixtures” (groups of tests) and “Tests”
• Provides setUp and tearDown functions for test setup and cleanup.
• Uses “Assertions” implemented as functions accepting 2 parameters: “Expected” and “Actual”

class DogTests {
Dog dog;
SetUp() { dog = new Dog(); }
TestBark() {

AssertEqual("Woof!", dog.Bark());
}

}

1 Rebecca Taylor

https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Cucumber_(software)#Gherkin_language

How-to Author a Testing Framework in .NET MiniSpec

Behavior-Driven Development

BDD-style syntax typically…

• Places an emphasis on using natural language, e.g. describe("Dog").it("can bark!")
• Provides before and after functions for test setup and cleanup.
• Uses natural language for “Expectations”, e.g. x.ShouldEqual() or Expect(x).toEqual()

Dog dog;
Describe("Dog", () => {

Before(() => { dog = new Dog(); });
It("can bark", () => {
Expect(dog.Bark()).ToEqual("Woof!");

});
});

Gherkin (aka Cucumber)

FromWikipedia:

“Cucumber is a software tool that supports behavior-driven development (BDD).”

“Gherkin is the language that Cucumber uses to define test cases.”

Gherkin is another BDD testing syntax which places an emphasis on using natural language.

Rather than defining tests in programming code, Gherkin uses a plain text syntax:

Feature: Dog
Scenario: Barking
Given a dog
When the dog barks
Then the output should be "Woof!"

Testing libraries for Gherkin allow you to write an interpreter for your Gherkin code:

[Then("the output should be \"(.*)\"")]
public void ThenTheOutputShouldBe(string value) {

Output.Should().Equal(value);
}

Rebecca Taylor 2

https://en.wikipedia.org/wiki/Cucumber_(software)#Gherkin_language

How-to Author a Testing Framework in .NET MiniSpec

Choosing a Style to Implement

So, which style(s) should we support with our MiniSpec testing framework project?

You can implement whatever you like! Whatever syntax your heart desires <3

In this book, we will be implementing:

• xUnit syntax where each test is represented by a C#method
• We will embrace the top-level statement support in C# 9 (just for fun!)
• We will provide an optional Expect()method for assertions

MiniSpec Syntax

// Simple tests may simply return a Boolean:
bool TestAnotherThing => 1 == 2;

// Developers may optionally include our Expect() method.
using static MiniSpec.Expect;

// Expect() can be used with simple one-line tests:
bool TestMoreThings => Expect(Foo).ToEqual("Bar");

// Or define full methods (Note: using a class is optional)
void MyTest() {

Expect(TheAnswer).ToEqual(42);
}

// Support for setup and teardown functionality
void SetUp() { /* do something */ }
void TearDown() { /* do something */ }

// Tests may also be grouped within a class
class MyTests {

bool PassingTest => true;

// Or even grouped within a method
static void Group() {
bool LocalTestFunction() => Expect("This Syntax").To.Work.OK;

}
}

Rebecca Taylor 3

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#top-level-statements

MiniSpec How-to Author a Testing Framework in .NET

Test-Driven Test Development

Wewill test-drive the development of our testing framework (test-driven test development!)

As we’re using Test-Driven Development (TDD), the first thing we need is a failing test!

Writing a Red Test

Wewill be using Behavior-Driven Development, so we’ll start off by testing some behavior.

Project Setup

Create an project folder somewhere. This is where you’ll be writing the test framework.

mkdir MiniSpec
cd MiniSpec

Consider making the folder a git repository to save changes as you walk thru this book:

git init

Let’s create a test project and write tests pretending that MiniSpec already works:

dotnet new console -n MyTests

A new console projects? Wait. What? Why in the…what? So: only console projects support
the new top-level statements in C# 9, so let’s define tests in a console project! This will
be an optional feature and, well, it’s just neato and I’d like to try it out! Let’s have fun.

This will create a new project folder MyTests/. Let’s go there and write our first test!

We’ll create a file containing 2 xUnit-style tests, one which should fail and the other should pass.

Rename the generated Program.cs file to Tests.cs and replace its content with the following:

4 Rebecca Taylor

https://en.wikipedia.org/wiki/Test-driven_development

How-to Author a Testing Framework in .NET MiniSpec

Example Tests.cs File

void TestShouldPass() {
// Do nothing

}

void TestShouldFail() {
throw new System.Exception("Kaboom!");

}

That’s it. No using statements. Just a tiny file with 2 methods. They’re not even public.

Now, we have two options:

• Write implementation code to run these two tests and print out the results
• Write integration testwhich runs these two tests and verifies the results are printed correctly.

Either approach is valid. We can treat our new Tests.cs as a failing test, conceptually.

But let’s go ahead and setup a real integration test which we can add to during development!

Integration Tests

Back in the root of our project folder, let’s create a project using an existing .NET testing framework.

At the time of writing, there are amany choices to choose from: xUnit, NUnit, MSTest, andmore.

To make this tutorial easier for most developers out there, let’s use the most popular one: xUnit

Let’s make a new xUnit test project now by running this command from the root project folder:

dotnet new xunit -n MiniSpec.Specs

Thiswill create anewproject folderMiniSpec.Specs/. Let’s go thereandwrite an integration test!

We’ll create a test which:

• Runs minispec.exewith the MyTests.dll DLL assembly provided as an argument
• Asserts that the output contains text which indicates that TestShouldPass() passed
• Asserts that the output contains text which indicates that TestShouldFail() failed

What is minispec.exe? It doesn’t exist yet, but that’s the programwe’ll make to run tests!

Rebecca Taylor 5

How-to Author a Testing Framework in .NET MiniSpec

Rename UnitTest1.cs to IntegrationTest.cs and replace its content with the following:

IntegrationTest.cs

using Xunit;

public class IntegrationTest {

[Fact]
public void ExpectedSpecsPassAndFail() {

// Arrange
var minispecExe = System.IO.File.Exists("minispec.exe") ?

"minispec.exe" : "minispec"; // No .exe extension on Linux

using var minispec = new System.Diagnostics.Process {
StartInfo = {

RedirectStandardOutput = true, // Get the STDOUT
RedirectStandardError = true, // Get the STDERR
FileName = minispecExe,
Arguments = "MyTests.dll"

}
};

// Act
minispec.Start();
minispec.WaitForExit();
var stdout = minispec.StandardOutput.ReadToEnd();
var stderr = minispec.StandardError.ReadToEnd();
var output = $"{stdout}{stderr}";
minispec.Kill();

// Assert
Assert.Contains("PASS TestShouldPass", output);
Assert.Contains("FAIL TestShouldFail", output);
Assert.Contains("Kaboom!", output);

}
}

Rebecca Taylor 6

How-to Author a Testing Framework in .NET MiniSpec

Review

So, what’s happening here?

• We assume that there will be a minispec.exe executable (or simply minispec on Linux).
• We invoke the minispec.exe process passing the DLL with our defined tests as an argument.
• We read STDOUT and STDERR from the process result, i.e. all of the program’s console output.
• STDOUT and STDERR are combined because we don’t currently care which the results output to.
• We look for expectedmessages in the output, e.g. PASS [testname] or FAIL [testname]

We’re totally making up some of these things as we go along, e.g. the PASS/FAILmessages.
This is how TDD works. We just need to make it fail, then pass, then we can change it later!

Making it Go Green

Our goal now is to make the test pass.

Is our goal to fully implement the testing framework? No.

Using TDD our goal now is simply to do whatever we need to do to make the test pass.

MiniSpec Project

Back in the root of our project folder, let’s create a new project for minispec.exe.

Let’s make a new console project by running this command from the root project folder:

dotnet new console -n MiniSpec

MiniSpec Solution

While we’re here in the root project folder, let’s create a Solution to make building simpler.

We’ll add all of projects which we’ve created so far: MyTests, MiniSpec.Specs, and MiniSpec

dotnet new sln
dotnet sln add MyTests
dotnet sln add MiniSpec.Specs
dotnet sln add MiniSpec

If you’d ever like to build all projects at once, now you can run dotnet build from this folder.

Rebecca Taylor 7

How-to Author a Testing Framework in .NET MiniSpec

minispec.exe

Build the new MiniSpec console project by running dotnet build from the MiniSpec folder.

If you look in the generated bin/Debug/*/ folder, you should now see a MiniSpec.exe file.

We’d like tomake oneminor correction now and rename the generated executable to minispec.exe

We can do this by specifying <AssemblyName>minispec</AssemblyName> in the .csproj file.

Update MiniSpec.csproj to the following:

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>
</Project>

Rebuild the project with dotnet build and you will see minispec.exe in bin/Debug/*/

Great! That’s the filename we specified in IntegrationTest.cs. Let’s try running that now!

Run the Integration Test

Back in the MiniSpec.Specs project, add project references for MiniSpec and MyTests:

cd MiniSpec.Specs/
dotnet add reference ../MiniSpec
dotnet add reference ../MyTests

Now run the tests with dotnet test (excerpt below)

IntegrationTest.ExpectedSpecsPassAndFail [FAIL]
Failed IntegrationTest.ExpectedSpecsPassAndFail]
Error Message:
Assert.Contains() Failure

Not found: PASS TestShouldPass <---- What We Expected
In value: Hello World! <---- Actual Value

Stack Trace:
at IntegrationTest.ExpectedSpecsPassAndFail()

Failed! - Failed: 1, Passed: 0, Skipped: 0, Total: 1

Rebecca Taylor 8

How-to Author a Testing Framework in .NET MiniSpec

Ah ha! The test looked for "PASS TestShouldPass" but found "Hello World!"

This is fabulous, it means that minispec.exe is running correctly!

Take a look at the generated Program.cs in the new MiniSpec project:

using System;

namespace MiniSpec
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Hello World!");
}

}
}

This is where the "Hello World!" value is coming from.

Update MiniSpec Program.cs

Try updating MiniSpec/Program.cs to the following:

using System;

Console.WriteLine($"Received Args: {string.Join(", ", args)}");

Where’s the Mainmethod?
C# 9 supports top-level statements used in one file to define your main programmore easily.

And now, still from MiniSpec.Specs/, run dotnet test again to see the change:

$ dotnet test
...
Not found: PASS TestShouldPass
In value: Received Args: MyTests.dll
...

Wonderful. Ok. Our program runs. It gets a list of DLLs. Now let’s run the tests in the DLLs!

Rebecca Taylor 9

How-to Author a Testing Framework in .NET MiniSpec

Discovering Tests in DLLs

Our minispec.exe program is currently seeing a list of paths to DLL files.

Let’s load the provided DLLs and find our defined test methods inside of them!

Get List of Methods in DLL

First, let’s update the test to print out a list of methods from the provided DLL.

Update MiniSpec/Program.cs to the following:

using System;
using System.Reflection;
using System.Runtime.Loader;

foreach (var dll in args) {
Console.WriteLine($"Loading {dll}");
var dllPath = System.IO.Path.GetFullPath(dll);
var assembly = AssemblyLoadContext.Default.LoadFromAssemblyPath(

dllPath);

foreach (var type in assembly.GetTypes()) {
Console.WriteLine($"Found type: {type}");
foreach (var method in type.GetMethods(BindingFlags.NonPublic |

BindingFlags.Instance))
Console.WriteLine($"Instance Method: {method.Name}");

foreach (var method in type.GetMethods(BindingFlags.NonPublic |
BindingFlags.Static))
Console.WriteLine($"Static Method: {method.Name}");

}
}

Review

• Load any argument as a .NET DLL assembly
• Loop over every defined type in the assembly (args is available to top-level statements)
• Loop over every instance method on the type (and print out the method name)
• Loop over every static method on the type (and print out the method name)

Rebecca Taylor 10

How-to Author a Testing Framework in .NET MiniSpec

Run the tests again with dotnet test (excerpt below)

Not found: PASS TestShouldPass
In value: Loading MyTests.dll
Found type: <Program>$
Instance Method: MemberwiseClone
Instance Method: Finalize
Static Method: <Main>$
Static Method: <<Main>$>g__TestShouldPass|0_0
Static Method: <<Main>$>g__TestShouldFail|0_1

The test is still failing (“Not found: PASS TestShouldPass”) butwe can see newoutput, which is good!

Even though we did not explicitly define it, C# 9 added a <Program> class for us.

As you would expect from a console application, this class has a static <Main>method.

And it looks like we found the test methods which we defined as top-level statements too!

Huh. <<Main>$>g__TestShouldPass|0_0. I guess that’s how local methods are represented.

Running Tests in DLLs

What now? Well, remember our goal? “do whatever we need to do to make the test pass”

Let’s be naive and simply run every static method we find with Test in the name.

Update MiniSpec/Program.cs to the following:

using System;
using System.Linq;
using System.Reflection;
using System.Runtime.Loader;

foreach (var dll in args) {
var dllPath = System.IO.Path.GetFullPath(dll);
var assembly = AssemblyLoadContext.Default.LoadFromAssemblyPath(

dllPath);
foreach (var type in assembly.GetTypes()) {

var testMethods = type.GetMethods(BindingFlags.NonPublic |
BindingFlags.Static)
.Where(m => m.Name.Contains("Test"));

foreach (var method in testMethods) {
try {

Rebecca Taylor 11

How-to Author a Testing Framework in .NET MiniSpec

method.Invoke(null, null);
Console.WriteLine($"PASS {method.Name}");

} catch (Exception e) {
Console.WriteLine($"FAIL {method.Name}");
Console.WriteLine($"ERROR {e.Message}");

}
}

}
}

Run the tests again with dotnet test (excerpt below)

Not found: PASS TestShouldPass
In value: PASS <<Main>$>g__TestShouldPass|0_0
FAIL <<Main>$>g__TestShouldFail|0_1
ERROR Exception has been thrown by the target of an invocation.

Yikes, we tried but a few things are incorrect which we need to fix.

• Name of the test is showing up as <<Main>$>g__TestShouldPass|0_0
• ^— this should be: TestShouldPass
• Exception message only says Exception has been thrown by the target of an invocation
• ^— this should be Kaboom!

Fix Program.cs

Update MiniSpec/Program.cs to the following:

using System;
using System.Linq;
using System.Reflection;
using System.Runtime.Loader;
using System.Text.RegularExpressions;

foreach (var dll in args) {
var dllPath = System.IO.Path.GetFullPath(dll);
var assembly = AssemblyLoadContext.Default.LoadFromAssemblyPath(

dllPath);
foreach (var type in assembly.GetTypes()) {

var testMethods = type.GetMethods(BindingFlags.NonPublic |
BindingFlags.Static)

Rebecca Taylor 12

How-to Author a Testing Framework in .NET MiniSpec

.Where(m => m.Name.Contains("Test"));
foreach (var method in testMethods) {

var displayName = method.Name;
if (Regex.IsMatch(displayName, @"[^\w]"))

displayName =
Regex.Match(displayName, @"Test([\w]+)").Value;

try {
method.Invoke(null, null);
Console.WriteLine($"PASS {displayName}");

} catch (Exception e) {
Console.WriteLine($"FAIL {displayName}");
Console.WriteLine($"ERROR {e.InnerException.Message}");

}
}

}
}

Run the tests again with dotnet test (excerpt below)

Passed! - Failed: 0, Passed: 1, Skipped: 0, Total: 1

Phew! We did it! Green, passing tests! Goodness gracious! Hooray!

Try it yourself!

bin/Debug/*/minispec.exe bin/Debug/*/MyTests.dll
PASS TestShouldPass
FAIL TestShouldFail
ERROR Kaboom!

On Linux: ./bin/Debug/*/minispec bin/Debug/*/MyTests.dll

Red, Green, Refactor

If you wrote code different fromwhat we have at home, now is the time to Refactor!

As the author, I am doing BDD (Book-Driven Development) and refactoring as I go.

At home, it is really important not to forget the Refactor step!

In the next section, we’ll come up with a list of features to implement and walk thru them.

Rebecca Taylor 13

MiniSpec How-to Author a Testing Framework in .NET

Planning Phase

We’ve created a working prototype. Nowwe need to decide what to make next!

Brainstorm Features

What do we want our wonderful new test framework to provide?

This ismy personal braindump of ideas - come up with your own ideas at home!

Command-Line Interface

• [] Output should show pretty colors
• [] minispec should always exit 0 on success or non-zero on failure
• [] minispec --version - Print out the current version of minispec
• [] minispec -l/--list - Print out test names instead of running them
• [] minispec -m/--match [Test Name Matcher] - Run a subset of the tests
• [] minispec -v/--verbose - Print output from every test, even passing ones
• [] minispec -q/--quiet - Don’t print anything, exit 0 on success or exit 1 on failure
• [] minispec -n/--no-local - Don’t consider local functions when searching for tests
• [] minispec -p/--pattern - Provide a custom pattern used to find test methods
• [] minispec -s/--setup - Provide a custom pattern used to find setupmethods
• [] minispec -t/--teardown - Provide a custom pattern used to find teardownmethods
• [] minispec -f/--formatter - Name of output reporter formatter to use, e.g. TAP
• [] minispec -d/--dll - Provide a custom pattern used to auto-find DLLs
• [] minispec -c/--config - Provide a text configuration file (default .minispec)

Syntax DSL (Domain-Specific Language)

• [] Support DLLS which need to load dependencies, including if there are conflicts
• [] Support failing if a Test method with a bool return type returns false

14 Rebecca Taylor

https://en.wikipedia.org/wiki/Domain-specific_language

How-to Author a Testing Framework in .NET MiniSpec

• [] Support running instance methods
• [] Invoke parent method(s) before invoking test function (if local function)
• [] Allow for some local functions within a test function not to be run (use _ prefix)
• [] Detect and run SetUp and TearDownmethods before and after each run of a test case
• [] Determine and implement a nice way of supporting parameterized tests (DDT)
• [] Let dotnet run run the tests if you invoke MiniSpec.Run()

Assertions & Expectations

• [] Should work fine with xUnit and NUnit and FluentAssertions assertions
• [] Extensibility so it’s easy to add your own Expect() assertions
• [] Expect().ToEqual
• [] Expect().ToContain
• [] Expect().ToMatch
• [] Expect(()=> { ... }).ToFail("Kaboom!")

Distribution

• [] Expect() should be available on its own via MiniSpec.Expect
• [] minispec.exe should be available on its own via MiniSpec.Console
• [] MiniSpec package should install both the library and the executable
• []Make available via GitHub Packages
• []Make available via MyGet
• []Make available via NuGet

Choose Feature to Implement

Looking at the list, as it is now, it looks pretty daunting.

For the next parts of this book, you’ll be able to hop around and implement whichever set of these
features that you’d like to (although somemay depend on completing other sections first).

My recommendation to you is to start by choosing one of these options:

• Something which will make you happy
• Something which is easy to get done
• Something which provides the most value

Rebecca Taylor 15

https://en.wikipedia.org/wiki/Data-driven_testing
https://github.com/features/packages
https://www.myget.org
https://www.nuget.org

How-to Author a Testing Framework in .NET MiniSpec

Make sure that you test-drive (and don’t forget the Refactor step!).

Have fun!

Rebecca Taylor 16

MiniSpec How-to Author a Testing Framework in .NET

Choose Your Own Adventure

17 Rebecca Taylor

	Introduction
	Defining the API
	Conventional Testing Styles
	xUnit
	Behavior-Driven Development
	Gherkin (aka Cucumber)

	Choosing a Style to Implement
	MiniSpec Syntax

	Test-Driven Test Development
	Writing a Red Test
	Project Setup
	Example Tests.cs File
	Integration Tests

	Making it Go Green
	MiniSpec Project
	minispec.exe
	Run the Integration Test
	Discovering Tests in DLLs
	Running Tests in DLLs

	Red, Green, Refactor

	Planning Phase
	Brainstorm Features
	Choose Feature to Implement

	Choose Your Own Adventure

